Points of narrowness and uniformly narrow operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

On uniformly nonsquare points and nonsquare points of Orlicz spaces*

For Orlicz spaces endowed with the Orlicz norm and the Luxemburg norm, the criteria for uniformly nonsquare points and nonsquare points are given.

متن کامل

Uniformly Factoring Weakly Compact Operators

Let X and Y be separable Banach spaces. Suppose Y either has a shrinking basis or Y is isomorphic to C(2N) andA is a subset of weakly compact operators from X to Y which is analytic in the strong operator topology. We prove that there is a reflexive space with a basis Z such that every T ∈ A factors through Z. Likewise, we prove that if A ⊂ L(X,C(2N)) is a set of operators whose adjoints have s...

متن کامل

On Fixed Points and Uniformly Convex Spaces

The purpose of this note is to present two elementary, but useful, facts concerning actions on uniformly convex spaces. We demonstrate how each of them can be used in an alternative proof of the triviality of the first Lp-cohomology of higher rank simple Lie groups, proved in [1]. Let G be a locally compact group with a compact generating set K ∋ 1, and let X be a complete Busemann non-positive...

متن کامل

Dynamical systems: recurrent and uniformly recurrent points

10.2. Example We consider the abstract dynamical system given in 9.18: the shift system over S where the phase space X is the product space {1, . . . , r}, for some r ≥ 2. For any R ⊆ S, there are x and U such that R(x, U) = R: simply pick x ∈ X be such that x(s) = 1 iff s ∈ R; so x might be considered as a characteristic function of R. Put U = {z ∈ X : z(1S) = 1}, a clopen subset of X. Then fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Mathematical Publications

سال: 2017

ISSN: 2313-0210,2075-9827

DOI: 10.15330/cmp.9.1.37-47